
1Input-Output Organization

Computer Organization Prof. H. Yoon

• Peripheral Devices

• Input-Output Interface

• Asynchronous Data Transfer

• Modes of Transfer

• Priority Interrupt

• Direct Memory Access

INPUT-OUTPUT ORGANIZATION

2Input-Output Organization

Computer Organization Prof. H. Yoon

PERIPHERAL DEVICES

Input Devices

• Keyboard

• Optical input devices

- Card Reader

- Paper Tape Reader

- Bar code reader

- Digitizer

- Optical Mark Reader

• Magnetic Input Devices

- Magnetic Stripe Reader

• Screen Input Devices

- Touch Screen

- Light Pen

- Mouse

• Analog Input Devices

Output Devices

• CRT

• LCD

• Printer (Impact, Ink Jet,

Laser, Dot Matrix)

• Plotter

• Analog

• Voice

Peripheral Devices

3Input-Output Organization

Computer Organization Prof. H. Yoon

INPUT/OUTPUT INTERFACE

Input/Output Interfaces

• An I/O interface provides a way to transfer information between
internal storage (such as memory and CPU registers) and
external I/O devices.

• An I/O interface is necessary because of differences between
the I/O device and the computer system:

– The I/O device may use different standards for sending data than the
computer system

– I/O devices are typically slower than computer systems

– Data representations may differ between the I/O device and the computer
system

– To provide a synchronization mechanism.

• As the name implies, an I/O interface is hardware that interfaces
between the I/O device and the computer system

– That is, it overcomes the differences between the two and allows them to
communicate

4Input-Output Organization

Computer Organization Prof. H. Yoon

I/O BUS AND INTERFACE MODULES

Each peripheral has an interface module associated with it

Interface

- Decodes the device address (device code)
- Decodes the commands (operation)
- Provides signals for the peripheral controller
- Synchronizes the data flow and supervises
the transfer rate between peripheral and CPU or Memory

Input/Output Interfaces

Processor

Interface

Keyboard
and

display
terminal

Magnetic
tape

Printer

Interface Interface Interface

Data

Address

Control

Magnetic
disk

I/O bus

5Input-Output Organization

Computer Organization Prof. H. Yoon

I/O BUS AND MEMORY BUS

* MEMORY BUS is for information transfers between CPU and the MM

* I/O BUS is for information transfers between CPU
and I/O devices through their I/O interface

* Some computer systems use two separate buses,
one to communicate with memory and the other with I/O interfaces

* Many computers use a common single bus system
for both memory and I/O interface units

- Use one common bus but separate control lines for each function
- Use one common bus with common control lines for both functions

Functions of Buses

Physical Organizations

Input/Output Interfaces

6Input-Output Organization

Computer Organization Prof. H. Yoon

ISOLATED vs MEMORY MAPPED I/O

- Separate I/O read/write control lines in addition to memory read/write
control lines

- Separate (isolated) memory and I/O address spaces

- Distinct input and output instructions

Isolated I/O

Memory-mapped I/O

- A single set of read/write control lines
(no distinction between memory and I/O transfer)

- Memory and I/O addresses share the common address space

-> reduces memory address range available

- No specific input or output instruction

-> The same memory reference instructions can
be used for I/O transfers

- Considerable flexibility in handling I/O operations

Input/Output Interfaces

7Input-Output Organization

Computer Organization Prof. H. Yoon

I/O INTERFACE

- Information in each port can be assigned a meaning
depending on the mode of operation of the I/O device
→ Port A = Data; Port B = Command; Port C = Status

- CPU initializes(loads) each port by transferring a byte to the Control Register
→ Allows CPU can define the mode of operation of each port
→ Programmable Port: By changing the bits in the control register, it is

possible to change the interface characteristics

CS RS1 RS0 Register selected

0 x x None - data bus in high-impedence
1 0 0 Port A register
1 0 1 Port B register
1 1 0 Control register
1 1 1 Status register

Programmable Interface

Input/Output Interfaces

Chip select

Register select

Register select

I/O read

I/O write

CS

RS1

RS0

RD

WR

Timing
and

Control

Bus
buffers

Bidirectional
data bus

Port A
register

Port B
register

Control
register

Status
register

I/O data

I/O data

Control

Status

CPU
I/O

Device

8Input-Output Organization

Computer Organization Prof. H. Yoon

ASYNCHRONOUS DATA TRANSFER

Synchronous - All devices derive the timing

information from common clock line

Asynchronous - No common clock

Asynchronous data transfer between two independent units requires that
control signals be transmitted between the communicating units to
indicate the time at which data is being transmitted

Strobe pulse
- A strobe pulse is supplied by one unit to indicate

the other unit when the transfer has to occur

Handshaking
- A control signal is accompanied with each data

being transmitted to indicate the presence of data
- The receiving unit responds with another control

signal to acknowledge receipt of the data

Synchronous and Asynchronous Operations

Asynchronous Data Transfer

Two Asynchronous Data Transfer Methods

Asynchronous Data Transfer

9Input-Output Organization

Computer Organization Prof. H. Yoon

* Employs a single control line to time each transfer

* The strobe may be activated by either the source or

the destination unit

STROBE CONTROL

Source
unit

Destination
unit

Data bus

Strobe

Data

Strobe

Valid data

Block Diagram

Timing Diagram

Source-Initiated Strobe

for Data Transfer

Source

unit

Destination

unit

Data bus

Strobe

Data

Strobe

Valid data

Block Diagram

Asynchronous Data Transfer

Destination-Initiated Strobe

for Data Transfer

Timing Diagram

10Input-Output Organization

Computer Organization Prof. H. Yoon

HANDSHAKING

Strobe Methods

Source-Initiated

The source unit that initiates the transfer has
no way of knowing whether the destination unit
has actually received data

Destination-Initiated

The destination unit that initiates the transfer has
no way of knowing whether the source has
actually placed the data on the bus

To solve this problem, the HANDSHAKE method
introduces a second control signal to provide a Reply
to the unit that initiates the transfer

Asynchronous Data Transfer

11Input-Output Organization

Computer Organization Prof. H. Yoon

SOURCE-INITIATED TRANSFER USING HANDSHAKE

* Allows arbitrary delays from one state to the next
* Permits each unit to respond at its own data transfer rate
* The rate of transfer is determined by the slower unit

Block Diagram

Timing Diagram

Accept data from bus.
Enable data accepted

Disable data accepted.
Ready to accept data
(initial state).

Sequence of Events
Place data on bus.
Enable data valid.

Source unit Destination unit

Disable data valid.
Invalidate data on bus.

Source
unit

Destination
unit

Data bus

Data accepted

Data bus

Data valid

Valid data

Data valid

Data accepted

Asynchronous Data Transfer

12Input-Output Organization

Computer Organization Prof. H. Yoon

DESTINATION-INITIATED TRANSFER USING HANDSHAKE

* Handshaking provides a high degree of flexibility and reliability because the
successful completion of a data transfer relies on active participation by both units

* If one unit is faulty, data transfer will not be completed

 Can be detected by means of a timeout mechanism

Block Diagram

Timing Diagram

Source
unit

Destination
unit

Data bus

Ready for data

Data valid

Sequence of Events

Place data on bus.
Enable data valid.

Source unit Destination unit

Ready to accept data.
Enable ready for data.

Disable data valid.
Invalidate data on bus
(initial state).

Accept data from bus.
Disable ready for data.

Ready for data

Data valid

Data bus
Valid data

Asynchronous Data Transfer

13Input-Output Organization

Computer Organization Prof. H. Yoon

ASYNCHRONOUS SERIAL TRANSFER
Asynchronous serial transfer
Synchronous serial transfer
Asynchronous parallel transfer
Synchronous parallel transfer

- Employs special bits which are inserted at both

ends of the character code

- Each character consists of three parts; Start bit; Data bits; Stop bits.

A character can be detected by the receiver from the knowledge of 4 rules;

- When data are not being sent, the line is kept in the 1-state (idle state)
- The initiation of a character transmission is detected

by a Start Bit , which is always a 0
- The character bits always follow the Start Bit
- After the last character, a Stop Bit is detected when

the line returns to the 1-state for at least 1 bit time

The receiver should know in advance the transfer rate of the
bits and the number of information bits to expect

Four Different Types of Transfer

Asynchronous Serial Transfer

Start
bit

(1 bit)

Stop
bits

Character bits

1 1 0 0 0 1 0 1

(at least 1 bit)

Asynchronous Data Transfer

14Input-Output Organization

Computer Organization Prof. H. Yoon

UNIVERSAL ASYNCHRONOUS RECEIVER-TRANSMITTER
- UART -

A typical asynchronous communication interface available as an IC

Transmitter Register
- Accepts a data byte(from CPU) through the data bus
- Transferred to a shift register for serial transmission

Receiver
- Receives serial information into another shift register
- Complete data byte is sent to the receiver register

Status Register Bits
- Used for I/O flags and for recording errors

Control Register Bits
- Define baud rate, no. of bits in each character, whether

to generate and check parity, and no. of stop bits

Chip select

Register select

I/O read

I/O write

CS

RS

RD

WR

Timing

and

Control

Bus

buffers

Bidirectional
data bus

Transmitter
register

Control
register

Status
register

Receiver
register

Shift
register

Transmitter
control

and clock

Receiver
control

and clock

Shift
register

Transmit
data

Transmitter
clock

Receiver
clock

Receive
data

Asynchronous Data Transfer

CS RS Oper. Register selected

0 x x None
1 0 WR Transmitter register
1 1 WR Control register
1 0 RD Receiver register
1 1 RD Status register

In
te

rn
a

l
B

u
s

15Input-Output Organization

Computer Organization Prof. H. Yoon

MODES OF TRANSFER - PROGRAM-CONTROLLED I/O -

3 different Data Transfer Modes between the central
computer(CPU or Memory) and peripherals; Program-Controlled I/O

Interrupt-Initiated I/O
Direct Memory Access (DMA)

Program-Controlled I/O(Input Dev to CPU)

Modes of Transfer

Polling or Status Checking

• Continuous CPU involvement
• CPU slowed down to I/O speed
• Simple
• Least hardware

Read status register
Check flag bit

flag

Read data register
Transfer data to memory

Operation
complete?

Continue with
program

= 0

= 1

yes

no

CPU

Data bus

Address bus

I/O read

I/O write

Interface

Data register

Status
register F

I/O bus

Data valid

Data accepted

I/O
device

16Input-Output Organization

Computer Organization Prof. H. Yoon

MODES OF TRANSFER - INTERRUPT INITIATED I/O & DMA

DMA (Direct Memory Access)

- Large blocks of data transferred at a high speed to
or from high speed devices, magnetic drums, disks, tapes, etc.

- DMA controller
Interface that provides I/O transfer of data directly
to and from the memory and the I/O device

- CPU initializes the DMA controller by sending a
memory address and the number of words to be transferred

- Actual transfer of data is done directly between
the device and memory through DMA controller
-> Freeing CPU for other tasks

- Polling takes valuable CPU time
- Open communication only when some data has

to be passed -> Interrupt.
- I/O interface, instead of the CPU, monitors the I/O device
- When the interface determines that the I/O device is

ready for data transfer, it generates an Interrupt Request to the CPU
- Upon detecting an interrupt, CPU stops momentarily

the task it is doing, branches to the service routine
to process the data transfer, and then returns to the
task it was performing

Interrupt Initiated I/O

Modes of Transfer

17Input-Output Organization

Computer Organization Prof. H. Yoon

PRIORITY INTERRUPT

Priority Interrupt by Software(Polling)

- Priority is established by the order of polling the devices(interrupt sources)

- Flexible since it is established by software

- Low cost since it needs a very little hardware

- Very slow

Priority Interrupt by Hardware

- Require a priority interrupt manager which accepts

all the interrupt requests to determine the highest priority request

- Fast since identification of the highest priority

interrupt request is identified by the hardware

- Fast since each interrupt source has its own interrupt vector to access

directly to its own service routine

Priority
- Determines which interrupt is to be served first
when two or more requests are made simultaneously

- Also determines which interrupts are permitted to
interrupt the computer while another is being serviced

(Higher priority interrupts can make requests while
servicing a lower priority interrupt)

Priority Interrupt

18Input-Output Organization

Computer Organization Prof. H. Yoon

HARDWARE PRIORITY INTERRUPT - DAISY-CHAIN -

One stage of the daisy chain priority arrangement

PI RF PO Enable
0 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

Interrupt Request from any device(>=1)
-> CPU responds by INTACK <- 1
-> Any device receives signal(INTACK) 1 at PI puts the VAD on the bus

Among interrupt requesting devices the only device which is physically closest
to CPU gets INTACK=1, and it blocks INTACK to propagate to the next device

Priority Interrupt

Device 1

PI PO

Device 2

PI PO

Device 3

PI PO

INT

INTACK

Interrupt request

Interrupt acknowledge

To next
device

CPU

VAD 1 VAD 2 VAD 3

Processor data bus

* Serial hardware priority function
* Interrupt Request Line

- Single common line
* Interrupt Acknowledge Line

- Daisy-Chain

S

R

Q
Interrupt
request

from device

PI
Priority in

RF

Delay

Vector address

VAD

POPriority out

Interrupt request to CPU

Enable

19Input-Output Organization

Computer Organization Prof. H. Yoon

PARALLEL PRIORITY INTERRUPT

IEN: Set or Clear by instructions ION or IOF
IST: Represents an unmasked interrupt has occurred. INTACK enables

tristate Bus Buffer to load VAD generated by the Priority Logic

Interrupt Register:
- Each bit is associated with an Interrupt Request from

different Interrupt Source - different priority level
- Each bit can be cleared by a program instruction

Mask Register:
- Mask Register is associated with Interrupt Register
- Each bit can be set or cleared by an Instruction

Priority Interrupt

Mask
register

INTACK
from CPU

Priority
encoder

I0

I1

I 2

I 3

0

1

2

3

y

x

ISTIEN0

1

2

3

0

0

0

0

0

0

Disk

Printer

Reader

Keyboard

Interrupt register

Enable

Interrupt
to CPU

VAD
to CPU

Bus
Buffer

20Input-Output Organization

Computer Organization Prof. H. Yoon

INTERRUPT PRIORITY ENCODER

Determines the highest priority interrupt when
more than one interrupts take place

Priority Encoder Truth table

1 d d d
0 1 d d
0 0 1 d
0 0 0 1
0 0 0 0

I0 I1 I2 I3

0 0 1
0 1 1
1 0 1
1 1 1
d d 0

x y IST

x = I0' I1'
y = I0' I1 + I0’ I2’

(IST) = I0 + I1 + I2 + I3

Inputs Outputs

Boolean functions

Priority Interrupt

21Input-Output Organization

Computer Organization Prof. H. Yoon

At the end of each Instruction cycle

- CPU checks IEN and IST

- If IEN IST = 1, CPU -> Interrupt Cycle

INTERRUPT CYCLE

SP SP - 1 Decrement stack pointer

M[SP] PC Push PC into stack

INTACK 1 Enable interrupt acknowledge

PC VAD Transfer vector address to PC

IEN 0 Disable further interrupts

Go To Fetch to execute the first instruction

in the interrupt service routine

Priority Interrupt

22Input-Output Organization

Computer Organization Prof. H. Yoon

INTERRUPT SERVICE ROUTINE

Initial and Final Operations
Each interrupt service routine must have an initial and final set of
operations for controlling the registers in the hardware interrupt system

Initial Sequence
[1] Clear lower level Mask reg. bits
[2] IST <- 0
[3] Save contents of CPU registers
[4] IEN <- 1
[5] Go to Interrupt Service Routine

Final Sequence
[1] IEN <- 0
[2] Restore CPU registers
[3] Clear the bit in the Interrupt Reg
[4] Set lower level Mask reg. bits
[5] Restore return address, IEN <- 1

Priority Interrupt

address Memory

JMP PTR

JMP RDR

JMP KBD

JMP DISK0

1

2

3

I/O service programs

Program to service

magnetic disk

Program to service

line printer

Program to service

character reader

Program to service

keyboard

DISK

PTR

RDR

KBD

255
256

750

256
750

Stack

Main program

current instr.749
KBD
interrupt

2

VAD=00000011 3

4

Disk
interrupt

5

6

7

8

9 10

11

1

23Input-Output Organization

Computer Organization Prof. H. Yoon

DIRECT MEMORY ACCESS

High-impedence
(disabled)

when BG is
enabled

CPU bus signals for DMA transfer

Block diagram of DMA controller

* Block of data transfer from high speed devices, Drum, Disk, Tape
* DMA controller - Interface which allows I/O transfer directly between

Memory and Device, freeing CPU for other tasks
* CPU initializes DMA Controller by sending memory

address and the block size(number of words)

Address bus

Data bus

Read

Write

ABUS

DBUS

RD

WR

Bus request

Bus granted

BR

BG
CPU

Address bus

Data bus

DMA select

Register select

Read

Write

Bus request

Bus grant

Interrupt

DS

RS

RD

WR

BR

BG

Interrupt

Data bus
buffers

Address bus
buffers

Address register

Word count register

Control register

DMA request

DMA acknowledge to I/O device

Control
logic

Direct Memory Access

In
te

rn
a

l
B

u
s

24Input-Output Organization

Computer Organization Prof. H. Yoon

DMA I/O OPERATION

Starting an I/O
- CPU executes instruction to

Load Memory Address Register
Load Word Counter
Load Function(Read or Write) to be performed
Issue a GO command

Upon receiving a GO Command DMA performs I/O
operation as follows independently from CPU

Input
[1] Input Device <- R (Read control signal)
[2] Buffer(DMA Controller) <- Input Byte; and

assembles the byte into a word until word is full
[4] M <- memory address, W(Write control signal)
[5] Address Reg <- Address Reg +1; WC(Word Counter) <- WC - 1
[6] If WC = 0, then Interrupt to acknowledge done, else go to [1]

Output
[1] M <- M Address, R

M Address R <- M Address R + 1, WC <- WC - 1
[2] Disassemble the word
[3] Buffer <- One byte; Output Device <- W, for all disassembled bytes
[4] If WC = 0, then Interrupt to acknowledge done, else go to [1]

Direct Memory Access

25Input-Output Organization

Computer Organization Prof. H. Yoon

CYCLE STEALING

While DMA I/O takes place, CPU is also executing instructions

DMA Controller and CPU both access Memory -> Memory Access Conflict

Memory Bus Controller
- Coordinating the activities of all devices requesting memory access
- Priority System

Memory accesses by CPU and DMA Controller are interwoven,
with the top priority given to DMA Controller

-> Cycle Stealing

Cycle Steal
- CPU is usually much faster than I/O(DMA), thus

CPU uses the most of the memory cycles
- DMA Controller steals the memory cycles from CPU
- For those stolen cycles, CPU remains idle

Direct Memory Access

26Input-Output Organization

Computer Organization Prof. H. Yoon

DMA TRANSFER

BG

BR

CPU

RD WR Addr Data

Interrupt

Random-access
memory unit (RAM)

RD WR Addr Data

BR

BG

RD WR Addr Data

Interrupt

DS

RS DMA
Controller

I/O
Peripheral

device

DMA request

DMA ack.

Read control

Write control

Data bus

Address bus

Address
select

Direct Memory Access

