
1Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

PIPELINING AND VECTOR PROCESSING

• Parallel Processing

• Pipelining

• Arithmetic Pipeline

• Instruction Pipeline

• RISC Pipeline

• Vector Processing

• Array Processors

2Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

PARALLEL PROCESSING

Levels of Parallel Processing

- Job or Program level

- Task or Procedure level

- Inter-Instruction level

- Intra-Instruction level

Execution of Concurrent Events in the computing

process to achieve faster Computational Speed

Parallel Processing

3Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

PARALLEL COMPUTERS

Architectural Classification

Number of Data Streams

Number of

Instruction

Streams

Single

Multiple

Single Multiple

SISD SIMD

MISD MIMD

Parallel Processing

– Flynn's classification

» Based on the multiplicity of Instruction Streams and
Data Streams

» Instruction Stream

• Sequence of Instructions read from memory

» Data Stream

• Operations performed on the data in the processor

4Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

COMPUTER ARCHITECTURES FOR PARALLEL
PROCESSING

Von-Neuman
based

Dataflow

Reduction

SISD

MISD

SIMD

MIMD

Superscalar processors

Superpipelined processors

VLIW

Nonexistence

Array processors

Systolic arrays

Associative processors

Shared-memory multiprocessors

Bus based
Crossbar switch based
Multistage IN based

Message-passing multicomputers

Hypercube
Mesh
Reconfigurable

Parallel Processing

5Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

SISD COMPUTER SYSTEMS

Control
Unit

Processor
Unit

Memory

Instruction stream

Data stream

Characteristics

- Standard von Neumann machine
- Instructions and data are stored in memory
- One operation at a time

Limitations

Von Neumann bottleneck

Maximum speed of the system is limited by the
Memory Bandwidth (bits/sec or bytes/sec)

- Limitation on Memory Bandwidth
- Memory is shared by CPU and I/O

Parallel Processing

6Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

SISD PERFORMANCE IMPROVEMENTS

• Multiprogramming

• Spooling

• Multifunction processor

• Pipelining

• Exploiting instruction-level parallelism

- Superscalar
- Superpipelining
- VLIW (Very Long Instruction Word)

Parallel Processing

7Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

MISD COMPUTER SYSTEMS

M CU P

M CU P

M CU P

•

•

•

•

•

•

Memory

Instruction stream

Data stream

Characteristics

- There is no computer at present that can be
classified as MISD

Parallel Processing

8Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

SIMD COMPUTER SYSTEMS

Control Unit

Memory

Alignment network

P P P• • •

M MM • • •

Data bus

Instruction stream

Data stream

Processor units

Memory modules

Characteristics

- Only one copy of the program exists
- A single controller executes one instruction at a time

Parallel Processing

9Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

MIMD COMPUTER SYSTEMS

Interconnection Network

P M P MP M • • •

Shared Memory

Characteristics

- Multiple processing units

- Execution of multiple instructions on multiple data

Types of MIMD computer systems

- Shared memory multiprocessors

- Message-passing multicomputers

Parallel Processing

10Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

PIPELINING

R1  Ai, R2  Bi Load Ai and Bi

R3  R1 * R2, R4  Ci Multiply and load Ci

R5  R3 + R4 Add

A technique of decomposing a sequential process
into suboperations, with each subprocess being
executed in a partial dedicated segment that
operates concurrently with all other segments.

Ai * Bi + Ci for i = 1, 2, 3, ... , 7

Ai

R1 R2

Multiplier

R3 R4

Adder

R5

Memory

Pipelining

Bi Ci

Segment 1

Segment 2

Segment 3

11Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

OPERATIONS IN EACH PIPELINE STAGE

Clock
Pulse

Segment 1 Segment 2 Segment 3

Number R1 R2 R3 R4 R5
1 A1 B1
2 A2 B2 A1 * B1 C1
3 A3 B3 A2 * B2 C2 A1 * B1 + C1
4 A4 B4 A3 * B3 C3 A2 * B2 + C2
5 A5 B5 A4 * B4 C4 A3 * B3 + C3
6 A6 B6 A5 * B5 C5 A4 * B4 + C4
7 A7 B7 A6 * B6 C6 A5 * B5 + C5
8 A7 * B7 C7 A6 * B6 + C6
9 A7 * B7 + C7

Pipelining

12Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

GENERAL PIPELINE

General Structure of a 4-Segment Pipeline

S R1 1 S R2 2 S R3 3 S R4 4
Input

Clock

Space-Time Diagram

1 2 3 4 5 6 7 8 9

T1

T1

T1

T1

T2

T2

T2

T2

T3

T3

T3

T3 T4

T4

T4

T4 T5

T5

T5

T5 T6

T6

T6

T6

Clock cycles

Segment 1

2

3

4

Pipelining

13Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

PIPELINE SPEEDUP

n: Number of tasks to be performed

Conventional Machine (Non-Pipelined)

tn: Clock cycle

t1: Time required to complete the n tasks

t1 = n * tn

Pipelined Machine (k stages)

tp: Clock cycle (time to complete each suboperation)

tk: Time required to complete the n tasks

tk = (k + n - 1) * tp

Speedup

Sk: Speedup

Sk = n*tn / (k + n - 1)*tp

n  
Sk =

tn

tp

lim

Pipelining

14Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

PIPELINE AND MULTIPLE FUNCTION UNITS

P1

I i

P2

I i+1

P3

I i+2

P4

I i+3

Multiple Functional Units

Example
- 4-stage pipeline
- subopertion in each stage; tp = 20nS
- 100 tasks to be executed
- 1 task in non-pipelined system; 20*4 = 80nS

Pipelined System
(k + n - 1)*tp = (4 + 99) * 20 = 2060nS

Non-Pipelined System
n*k*tp = 100 * 80 = 8000nS

Speedup
Sk = 8000 / 2060 = 3.88

4-Stage Pipeline is basically identical to the system
with 4 identical function units

Pipelining

15Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

ARITHMETIC PIPELINE

Floating-point adder

[1] Compare the exponents
[2] Align the mantissa
[3] Add/sub the mantissa
[4] Normalize the result

X = A x 2a

Y = B x 2b
R

Compare
exponents

by subtraction

a b

R

Choose exponent

Exponents

R

A B

Align mantissa

Mantissas

Difference

R

Add or subtract
mantissas

R

Normalize
result

R

R

Adjust
exponent

R

Segment 1:

Segment 2:

Segment 3:

Segment 4:

Arithmetic Pipeline

16Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

INSTRUCTION CYCLE

Six Phases* in an Instruction Cycle

[1] Fetch an instruction from memory
[2] Decode the instruction
[3] Calculate the effective address of the operand
[4] Fetch the operands from memory
[5] Execute the operation
[6] Store the result in the proper place

* Some instructions skip some phases
* Effective address calculation can be done in

the part of the decoding phase
* Storage of the operation result into a register

is done automatically in the execution phase

==> 4-Stage Pipeline

[1] FI: Fetch an instruction from memory
[2] DA: Decode the instruction and calculate

the effective address of the operand
[3] FO: Fetch the operand
[4] EX: Execute the operation

Instruction Pipeline

17Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

INSTRUCTION PIPELINE

Execution of Three Instructions in a 4-Stage Pipeline

Instruction Pipeline

FI DA FO EX

FI DA FO EX

FI DA FO EX

i

i+1

i+2

Conventional

Pipelined

FI DA FO EX

FI DA FO EX

FI DA FO EX

i

i+1

i+2

18Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

INSTRUCTION EXECUTION IN A 4-STAGE PIPELINE

1 2 3 4 5 6 7 8 9 10 12 1311

FI DA FO EX1

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

2

3

4

5

6

7

FI

Step:

Instruction

(Branch)

Instruction Pipeline

Fetch instruction
from memory

Decode instruction
and calculate

effective address

Branch?

Fetch operand
from memory

Execute instruction

Interrupt?Interrupt
handling

Update PC

Empty pipe

no

yes

yes
no

Segment1:

Segment2:

Segment3:

Segment4:

19Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

MAJOR HAZARDS IN PIPELINED EXECUTION
Structural hazards(Resource Conflicts)

Hardware Resources required by the instructions in
simultaneous overlapped execution cannot be met

Data hazards (Data Dependency Conflicts)

An instruction scheduled to be executed in the pipeline requires the
result of a previous instruction, which is not yet available

JMP ID PC + PC

bubble IF ID OF OE OS

Branch address dependency

Hazards in pipelines may make it
necessary to stall the pipeline

Pipeline Interlock:
Detect Hazards Stall until it is cleared

Instruction Pipeline

ADD DA B,C +

INC DA +1R1bubble

Data dependencyR1 <- B + C
R1 <- R1 + 1

Control hazards

Branches and other instructions that change the PC
make the fetch of the next instruction to be delayed

20Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

RISC PIPELINE

Instruction Cycles of Three-Stage Instruction Pipeline

RISC Pipeline

RISC
- Machine with a very fast clock cycle that

executes at the rate of one instruction per cycle
<- Simple Instruction Set

Fixed Length Instruction Format
Register-to-Register Operations

Data Manipulation Instructions
I: Instruction Fetch
A: Decode, Read Registers, ALU Operations
E: Write a Register

Load and Store Instructions
I: Instruction Fetch
A: Decode, Evaluate Effective Address
E: Register-to-Memory or Memory-to-Register

Program Control Instructions
I: Instruction Fetch
A: Decode, Evaluate Branch Address
E: Write Register(PC)

21Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

DELAYED LOAD

Three-segment pipeline timing

Pipeline timing with data conflict

clock cycle 1 2 3 4 5 6
Load R1 I A E
Load R2 I A E
Add R1+R2 I A E
Store R3 I A E

Pipeline timing with delayed load

clock cycle 1 2 3 4 5 6 7
Load R1 I A E
Load R2 I A E
NOP I A E
Add R1+R2 I A E
Store R3 I A E

LOAD: R1  M[address 1]

LOAD: R2  M[address 2]

ADD: R3  R1 + R2

STORE: M[address 3]  R3

RISC Pipeline

The data dependency is taken
care by the compiler rather
than the hardware

22Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

DELAYED BRANCH

1

I

3 4 652Clock cycles:

1. Load A

2. Increment

4. Subtract

5. Branch to X

7

3. Add

8

6. NOP

E

I A E

I A E

I A E

I A E

I A E

9 10

7. NOP

8. Instr. in X

I A E

I A E

1

I

3 4 652Clock cycles:

1. Load A

2. Increment

4. Add

5. Subtract

7

3. Branch to X

8

6. Instr. in X

E

I A E

I A E

I A E

I A E

I A E

Compiler analyzes the instructions before and after
the branch and rearranges the program sequence by
inserting useful instructions in the delay steps

Using no-operation instructions

Rearranging the instructions

RISC Pipeline

23Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

VECTOR PROCESSING

Vector Processing

Vector Processing Applications

• Problems that can be efficiently formulated in terms of vectors

– Long-range weather forecasting

– Petroleum explorations

– Seismic data analysis

– Medical diagnosis

– Aerodynamics and space flight simulations

– Artificial intelligence and expert systems

– Mapping the human genome

– Image processing

Vector Processor (computer)

Ability to process vectors, and related data structures such as matrices

and multi-dimensional arrays, much faster than conventional computers

Vector Processors may also be pipelined

24Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

VECTOR PROGRAMMING

DO 20 I = 1, 100
20 C(I) = B(I) + A(I)

Conventional computer

Initialize I = 0
20 Read A(I)

Read B(I)
Store C(I) = A(I) + B(I)
Increment I = i + 1
If I  100 goto 20

Vector computer

C(1:100) = A(1:100) + B(1:100)

Vector Processing

25Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

VECTOR INSTRUCTIONS

f1: V * V
f2: V * S
f3: V x V * V
f4: V x S * V

V: Vector operand
S: Scalar operand

Type Mnemonic Description (I = 1, ..., n)

Vector Processing

f1 VSQR Vector square root B(I) * SQR(A(I))

VSIN Vector sine B(I) * sin(A(I))

VCOM Vector complement A(I) * A(I)

f2 VSUM Vector summation S * S A(I)

VMAX Vector maximum S * max{A(I)}

f3 VADD Vector add C(I) * A(I) + B(I)

VMPY Vector multiply C(I) * A(I) * B(I)

VAND Vector AND C(I) * A(I) . B(I)

VLAR Vector larger C(I) * max(A(I),B(I))

VTGE Vector test > C(I) * 0 if A(I) < B(I)

C(I) * 1 if A(I) > B(I)

f4 SADD Vector-scalar add B(I) * S + A(I)

SDIV Vector-scalar divide B(I) * A(I) / S

26Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

VECTOR INSTRUCTION FORMAT

Operation
code

Base address
source 1

Base address
source 2

Base address
destination

Vector
length

Vector Processing

Vector Instruction Format

Source
A

Source
B

Multiplier
pipeline

Adder
pipeline

Pipeline for Inner Product

27Pipelining and Vector Processing

Computer Organization Computer Architectures Lab

MULTIPLE MEMORY MODULE AND INTERLEAVING

Vector Processing

Multiple Module Memory

Address Interleaving

Different sets of addresses are assigned to
different memory modules

AR

Memory

array

DR

AR

Memory

array

DR

AR

Memory

array

DR

AR

Memory

array

DR

Address bus

Data bus

M0 M1 M2 M3

