
 1997 John D. Carpinelli, All Rights Reserved 1

Computer Arithmetic

Computers perform a large number of arithmetic operations on numbers in a
variety of formats. We examine the algorithms and the hardware to implement
addition, subtraction, multiplication and division for several different data
formats. Signed-magnitude and signed-2’s complement are two formats used
to store integer (fixed-point) values. Floating point, as its name implies, is
used to store floating point numbers. BCD, or binary coded decimal, is used to
store decimal values.

 1997 John D. Carpinelli, All Rights Reserved 2

Outline

u Introduction
u Numeric formats
u Arithmetic algorithms:

– Signed-Magnitude format
– Signed-2’s Complement format
– Floating Point format
– BCD format

u Summary

In signed-magnitude format, numbers are stored in two parts. The first part is
a 1-bit sign, which is zero for positive numbers (or zero) and one for negative
numbers. The remaining bits comprise the mantissa, or magnitude portion of
the value. The mantissa is represented the same, regardless of the value of the
sign bit. For example, +5 = 0 0101 and -5 = 1 0101.

 1997 John D. Carpinelli, All Rights Reserved 3

Signed-Magnitude format

Express a number as AsA

u As = One-bit sign bit
u A = n-bit mantissa
u Negative mantissas are not expressed

in 2’s complement

Signed-2’s complement is the same as signed-magnitude, except that, for
negative numbers, the mantissa is stored in 2’s complement format. Just as
before, +5 = 0 0101; however, -5 = 1 1011.

 1997 John D. Carpinelli, All Rights Reserved 4

Signed-2’s Complement format

Express a number as AsA

u As = One-bit sign bit
u A = n-bit mantissa
u Negative mantissas are expressed in 2’s

complement

Floating point format is used to express numbers which may have a fractional
component. As with signed-magnitude format, it contains a one-bit sign bit
and a mantissa which is not expressed in 2’s complement form when negative.
The mantissa is considered to be in normal form, that is, in the form of a
fraction with no leading zeroes. There is also an exponent which may be
positive or negative.

Floating point numbers may be in any base r. For example, in base 2, +5 is
expressed as .101 * 2^3; the sign bit is zero, the mantissa is 101 and the
exponent is 3, or 011. If r=10, as is the case for decimal numbers, +5 is
expressed as .5 * 10^1.

 1997 John D. Carpinelli, All Rights Reserved 5

Floating Point format

Express a number as AsAa = As(A * ra)

u As = One-bit sign bit
u A = n-bit mantissa
u a = exponent
u Negative mantissas are not expressed

in 2’s complement

Binary Coded Decimal, or BCD, format is used to store numbers as decimal
values. Every four bits of the mantissa encodes a single decimal digit. Digits
0 to 9 are encoded as 0000 to 1001; 1010 to 1111 are not used. For example,
the decimal value 27 is encoded as 0010 0111. We’ll examine how this affects
arithmetic algorithms and hardware later in this module.

 1997 John D. Carpinelli, All Rights Reserved 6

BCD format

Express a number as AsA

u As = One-bit sign bit
u A = n-bit mantissa, where each 4 bits of

A represent one BCD digit

Comparing two values is a fundamental operation performed by several
arithmetic algorithms. Consider two numbers, A and B. To compare them, we
form D = A - B = A + /B + 1 and note the result. If D is not zero and the carry
out is 1, then A > B. If D is zero and the carry out is one, then A = B. If the
carry out is zero, then A < B. For example, consider these three cases:

A = +5 = 0101; B = +3 = 0011; /B + 1 = 1101; A + /B +1 = 1 0010

A = +3 = 0011; B = +3 = 0011; /B + 1 = 1101; A + /B +1 = 1 0000

A = +3 = 0011; B = +5 = 0101; /B + 1 = 1011; A + /B +1 = 0 1110

 1997 John D. Carpinelli, All Rights Reserved 7

Comparing relative magnitudes

To compare A and B, subtract B from A
using full adders,using complements,
forming D = A - B = A + B + 1:

u If A > B, then D ≠≠ 0, carry = 1
u If A = B, then D = 0, carry = 1
u If A < B, then carry = 0

We can use this comparison procedure to compare signed-magnitude numbers.
Here, we must take into account the sign bits, as they are not reflected in the
magnitude portion of the numbers. Two numbers, X and Y, are equal if and
only if their sign bits are the same and their magnitudes are the same. X is
greater than Y if (i) X is positive and Y is negative; (ii) X and Y are positive
and the magnitude of X is greater than the magnitude of Y; or (iii) X and Y are
negative and the magnitude of X is less than the magnitude of Y. The latter
case would occur, for instance, if X = -3 and Y = -5. The conditions for which
X < Y are similar.

 1997 John D. Carpinelli, All Rights Reserved 8

Comparing signed-magnitude
numbers

X = XsXm; Y = YsYm

u X=Y if Xs = Ys and Xm = Ym

u X>Y if (XsYs) v (XsYs ^ Xm>Ym)
v (XsYs ^ Xm<Ym)

u X<Y if (XsYs) v (XsYs ^ Xm<Ym)
v (XsYs ^ Xm>Ym)

This table lists the eight possible cases for adding and subtracting two signed-
magnitude numbers based on their signs and relative magnitudes. First, we
will look at the addition operations, then the subtraction operations and finally
the hardware necessary to implement both. Of particular note is that the
magnitude of the result can have only one of three values, A+B, A-B or B-A,
which, as we will see, is /(A-B) + 1.

 1997 John D. Carpinelli, All Rights Reserved 9

Signed-Magnitude addition and
subtraction

See table 10.1, p. 335 of the textbook.

First let’s look at the top half of the table, which lists the addition operations.
When A and B have the same sign, we simply add the magnitudes, regardless
of the sign. The sign of the result is the same as the sign of the two numbers
being added.

When the two numbers have different signs, we must consider their relative
magnitudes in generating the result. Whether A>B or A<B, the magnitude of
the result is the larger magnitude less the smaller magnitude, either A-B or
B-A. The sign of the result is the sign of the greater value. If A=B, the result
is always +0. (A-B=0. As we will see, this is used because we need hardware
to generate A-B anyway, so we can use that hardware here as well.)

 1997 John D. Carpinelli, All Rights Reserved 10

Addition procedure

Forming X = AsA + BsB:

u If As = Bs, X = As,A+B
u If As ≠≠ Bs and A ≠≠ B, X = Xs,(MAX(A,B) -

MIN(A,B)), where Xs=(MAX(A,B))s

u If As ≠≠ Bs and A == B, X = +0

Now let’s look at the subtraction operations. This time we add the magnitudes
if the signs are not the same. For example, (+A) - (-B) is equal to (+A) + (+B).
Thus, each row in the lower half of the table has an analogous row in the upper
half. If the signs are the same, we subtract the lesser magnitude from the
greater magnitude, just as before. Again, the sign of the result is that of the
number with the greater magnitude. Zero results occur as before for A=B; the
sign in this case is always positive.

 1997 John D. Carpinelli, All Rights Reserved 11

Subtraction procedure

Forming X = AsA - BsB:

u If As ≠≠ Bs, X = As,A+B
u If As == Bs and A ≠≠ B, X = Xs,(MAX(A,B) -

MIN(A,B)), where Xs=(MAX(A,B))s

u If As == Bs and A == B, X = +0

Given these possible results, we need the hardware listed above. Note that we
will use 2’s complement addition and negation to reduce these requirements.
As will be seen shortly, we will get rid of the subtractors and the comparator.

 1997 John D. Carpinelli, All Rights Reserved 12

Hardware requirements

u One adder to form A+B
u Two subtractors to form A-B and B-A
u One comparator to determine if A>B,

A=B or A<B
u One XOR gate to determine if As = Bs or

As ≠≠ Bs

u We can reduce this by using 2’s
complements

Here is the hardware to implement addition and subtraction of signed-
magnitude numbers regardless of their signs. This is very similar to the
hardware seen in previous modules. If M=0 the parallel adder forms A+B; if
M=1 it forms A+/B+1, or A-B. M is defined as As xor Bs xor OP, where
OP=0 for addition and 1 for subtraction.

 1997 John D. Carpinelli, All Rights Reserved 13

Hardware configuration

See figure 10.1, p. 337 of the textbook.

The value M will determine how the operations should proceed. Reviewing
the table, it can be seen that M=0 corresponds to the case where we must
generate the magnitude as A+B, which is exactly what the hardware will do.
In forming the result AsA = AsA + BsB, this generates the correct magnitude;
the value in As should also remain unchanged, so we are done.

When M=1 we must consider the relative magnitudes of A and B. M=1 causes
the parallel adder to generate A+/B+1, or A-B. It also provides important
information about the relative magnitudes as it performs the comparison
operation discussed earlier. If the carry bit is 1 and the magnitude is not zero,
A>B and the magnitude is correct (i.e. we wanted A-B); the original sign bit in
As is also correct. If the carry bit is 1 and the magnitude is zero, A=B. Again,
the magnitude is correct, but As may or may not be correct. Rather than
checking it explicitly, it is easier just to set it to zero, for positive. Finally, if
the carry bit is zero, A<B and the magnitude is incorrect. We have A-B but we
need B-A. To negate a binary value, we simply take the 2’s complement, so
we take the 1’s complement and add 1. The sign bit is also incorrect in this
case and must be complemented.

For all of these operations, we must also set the overflow flag, AVF. Overflow
can only occur when the magnitudes are added and we generate a carry out.

 1997 John D. Carpinelli, All Rights Reserved 14

Addition/subtraction procedure

u When M=0: As should retain its previous
value and the output of the parallel
adder is the correct magnitude

u When M=1:
– If A>B, As and magnitude are correct (E=1)
– If A=B, As ← ← 0 and magnitude is correct (0)
– If A<B, As ← ← As and magnitude must get 2’s

complement of value generated (E=0)

We have taken these concepts and encoded them into a microcoded algorithm.
In T0 we form either A+B or A-B, depending on the value of M. We store the
result, with carry out, in E&A. During T1, we check for overflow and set AVF
accordingly. If E=0 and M=1, signifying that we formed A-B and that B>A,
we begin the process of forming the 2’s complement of the result. During T1,
under these circumstances, we form the 1’s complement of the result. Under
the same conditions during T2, we add 1 to the result, completing the negation;
we also invert the sign bit, as is required. Finally, when E=1 and M=1, we set
As to zero if and only if A=0, forming +0 when required.

 1997 John D. Carpinelli, All Rights Reserved 15

Addition/subtraction algorithm

T0: EA ←← A + (B ⊕⊕ M) + M
T1: AVF ←← E^M
EMT1: A ←← A
EMT2: A ←← A + 1, As ←← As

EMT2: As ←← As ^ (v/A)

Let’s look at a couple of examples. First, consider the case where AsA = +5 =
0 0101 and BsB = -3 = 1 0011. We are adding these values, so OP=0 and
M=1. During T0 we form A+/B+1 = A-B. There is no overflow, so AVF is
set to zero during T1. E is 1, so the negation is not implemented. Finally, the
sign bit remains unchanged at zero. Our result is AsA = 0 0010 = +2.

 1997 John D. Carpinelli, All Rights Reserved 16

Example: +5 + (-3)

Note: M = 1
T0: EA ←← A + (B ⊕⊕ M) + M

= 0101 + 1100 + 1 = 10010
T1: AVF ←← E^M = 1^0 = 0
EMT1: A ←← A (not done, E=1)
EMT2: A ←← A+1, As ←← As (not done, E=1)
EMT2: As ←← As ^ (v/A) (As = 0)

This example illustrates the case where B>A. During T0 we again form
A+/B+1. This time, however, E=0, signifying that B>A. In T1, AVF is
cleared. For this data, E=0 and M=1, so we perform the negation of the
magnitude of the result. We complement the result during T1 and increment it
during T2; we also invert the sign during T2. Since E=0, the last statement is
not performed. Our net result, AsA = 1 0010 = -2, is correct.

 1997 John D. Carpinelli, All Rights Reserved 17

Example: +3 + (-5)

Note: M = 1
T0: EA ←← A + (B ⊕⊕ M) + M

= 0011 + 1010 + 1 = 01110
T1: AVF ←← E^M = 0^0 = 0
EMT1: A ←← A = 0001
EMT2: A ←← A+1 = 0010, As ←← As = 1
EMT2: As ←← As ^ (v/A) (not done, E = 0)

The signed-2’s complement addition and subtraction operations are much
simpler. Regardless of their signs, the two numbers are added by directly
adding the two values. Subtraction is performed by adding the first value to
the 2’s complement of the second. An overflow flag V gets the result of the
overflow.

 1997 John D. Carpinelli, All Rights Reserved 18

Signed-2’s Complement
addition/subtraction

Forming X = AsA + BsB or X = AsA - BsB:

If addition, add the two numbers directly
If subtraction, subtract using 2’s

complement addition
In either case, V ←← overflow

The hardware to implement this is virtually the same as presented in module 1.
Again, OP=0 for addition and OP=1 for subtraction.

 1997 John D. Carpinelli, All Rights Reserved 19

Hardware configuration

Bs B

AsA

Parallel
Adder

Cin=OP

+ OP

V

Multiplication can be performed using a shift/add strategy, similar to how we
multiply decimal nubmers. To multiply two numbers, we form partial
products and add the results. In this example, we first multiply 25*7, then
25*1. Note that the results 25*1=25 is shifted one position to the left. This is
necessary to reflect the fact that the 1 is one position to the left of the 7. To
implement shift-add multiplication, we will generate each partial result and
then shift the running total one position to the right. This simplifies the design
of the hardware significantly.

 1997 John D. Carpinelli, All Rights Reserved 20

Signed-Magnitude multiplication:
shift/add methodology

u Multiplication is performed using a
shift/add methodology

Example (25*17): 25
 17
175
25
425

We will form the product AR&QR = BR*QR, where each register stores
numbers in signed-magnitude format. Regardless of their magnitudes, the sign
bit can be set immediately.

Note that this algorithm and hardware design assume that neither BR nor QR
contains zero. In fact, we would simply add a step at the beginning of the
algorithm to check for those cases and, if true, set the result to zero and exit.

 1997 John D. Carpinelli, All Rights Reserved 21

Register specification

A&Q ←← B * Q

Sign bit is set to Bs ⊕⊕ Qs

This figure shows the hardware needed to implement the shift-add
multiplication algorithm. Notice that A and Q contain the running total. For
this algorithm, the “complementer and parallel adder” should be only a parallel
adder.

 1997 John D. Carpinelli, All Rights Reserved 22

Hardware configuration

See figure 10.5, p. 341 of the textbook.

Here is the algorithm to implement shift-add multiplication. In step 1, we
perform initialization by setting the sign of the result (both sign bits are set),
setting the running total to zero and setting the loop counter to n-1. (Each
register contains n bits, one for the sign and n-1 for the mantissa.)

The remainder of the algorithm performs the shift-add loop n-1 times, once for
each bit of the mantissa. In step 2, we check the least significant bit of Q. If it
is 1, we perform the addition; if it is zero we don’t. In the decimal example,
we had to multiply each digit. Here, the digit is a single bit, either zero or one,
so we don’t have to multiply; we either add or don’t add. Step 3 shifts the
running total one position to the right. It also shifts the multiplier one position
to the right so that the next bit is used during the next loop iteration. SC is also
decremented here. In step 4, if we are not done, we loop back.

 1997 John D. Carpinelli, All Rights Reserved 23

Signed-Magnitude multiplication
algorithm

1. As ← ← Bs ⊕⊕ Qs, Qs ← ← Bs ⊕⊕ Qs, A ← ← 0,
E ← ← 0, SC ← ← n - 1

2. IF Q0 = 1 THEN EA ← ← A+B
3. shr(EAQ), SC ← ← SC - 1
4. IF (SC ≠ ≠ 0) THEN GOTO 2

Consider this example. If we performed the multiplication logically, we would
generate this series of partial results, and the final result.

 1997 John D. Carpinelli, All Rights Reserved 24

Example

(-13) * (+10) = 1101 * 1010 (ignore signs):

 1101
 1010
 0000
 1101
 11010
0000
011010

 1101
 10000010

Here we step through the algorithm. In step 1 we set the sign bits to 1 since
the result will be negative. We also set the running total, underlined
throughout this example, to zero and set the loop counter to 4.

During the first iteration of this loop, we do not perform the addition. We
simply shift EAQ one position to the right and decrement SC. During the
second iteration we do perform the addition prior to the shift and counter
update.

 1997 John D. Carpinelli, All Rights Reserved 25

Example

BsB = 11101 QsQ = 01010

Step Action E A Q
1 As/Qs ← ← 1, SC ← ← 4 0 0000 1010

2,3,4 SC ← ← 3, shr(EAQ) 0 0000 0101
2 EA ← ← A+B 0 1101 0101

 3,4 SC ← ← 2, shr(EAQ) 0 0110 1010

We continue with the remaining two iterations, not adding in the third and
adding in the fourth. The final magnitude is stored in A&Q.

Notice in this algorithm that the running total moves one more bit into Q for
each iteration. Simultaneously, we finish with one bit of Q which is shifted
out. This is the most efficient hardware configuration possible for this
algorithm.

 1997 John D. Carpinelli, All Rights Reserved 26

Example (continued)

BsB = 11101 QsQ = 01010

Step Action E A Q
2,3,4 SC ← ← 1, shr(EAQ) 0 0011 0101

2 EA ← ← A+B 1 0000 0101
 3,4 SC ← ← 0, shr(EAQ) 0 1000 0010
Result: (-13)*(+10) = -130

For signed-2’s complemetn numbers, we can make use of the fact that a string
of 1’s may be treated as the difference of two values, regardless of how many
1’s are in the string. For example, 111111 = 1000000 - 0000001. In Booth’s
algorithm for multiplying signed-2’s complement numbers, we perform one
addition and one subtraction for each string of 1’s.

 1997 John D. Carpinelli, All Rights Reserved 27

Signed-2’s Complement
multiplication: Booth’s algorithm

Instead of adding for each value in a string
of 1’s, subtract for the first one and add
for the last one

e.g. 111111 = 1000000 - 0000001

Here is the hardware to implement Booth’s algorithm. Unlike the previous
shift-add algorithm, we may perform addition and subtraction, so we must
have a “complementer and parallel adder,” not just a parallel adder.

Of particular note is the extra bit Q[n+1]. First of all, the author reverses his
usual notation in which the least significant bit is bit 0. Regardless of the
nomenclature, this extra bit is needed to tell if a string of 1’s has begun or
ended (or neither).

 1997 John D. Carpinelli, All Rights Reserved 28

Hardware configuration

See figure 10.7, p. 344 of the textbook.

Here is Booth’s algorithm. Note that AC, QR and BR contain both the sign
and magnitude portions of their respective values. In step 1, we perform
initialization. We set the running total to zero and set Q[n+1] to zero to
signify that no string of 1’s has started yet. We also initialize the loop counter.
Here n includes both the sign bit and the n-1 bits of the mantissa.

As before, the remaining steps comprise the loop. In step 2 we check to see if
a string of 1’s has either begun or ended. The result of the exclusive-or
operation will be 1 in either case. If this is true and Qn=1, we are starting a
string of 1’s and must perform AC=AC-BR, which is implemented as a 2’s
complement addition. If Qn=0 we are completing a string of 1’s and must
form AC=AC+BR. Steps 3 and 4 perform the usual shift and loop control.
Notice that we perform an arithmetic shift to preserve the sign bit.

Every addition balances out a subtraction, but the reverse is not necessarily
true. If QR is negative, the final subtraction will never be balanced out by an
addition operation.

 1997 John D. Carpinelli, All Rights Reserved 29

Signed-2’s Complement
multiplication algorithm

AC&QR ←← BR * QR

1. AC ← ← 0, Qn+1 ← ← 0, SC ← ← n
2. IF (Qn ⊕⊕ Qn+1 = 1) THEN

AC ← ← AC+(BR ⊕⊕ Qn) + Qn

3. ashr(AC&QR& Qn+1), SC ← ← SC - 1
4. IF (SC ≠ ≠ 0) THEN GOTO 2

Consider this example. In step 1 we zero out the running total and Q[n+1] and
initialize the loop counter. The first iteration begins a string of 1’s, so we add
/BR+1 to the running total. We perform the required shift and process the loop
counter.

During the second iteration we are still within the string of 1’s, so we neither
add nor subtract during this iteration.

 1997 John D. Carpinelli, All Rights Reserved 30

Example

QR = 10011 BR = 01111 BR + 1 = 10001

Step AC QR Qn+1 SC
1 00000 10011 0 5
2 10001 10011 0 5

 3,4 11000 11001 1 4
2,3,4 11100 01100 1 3

During the third iteration the string of 1’s ends, so we perform the addition. In
the fourth iteration, we have not yet started a new string of 1’s, so we do not
add nor subtract.

Finally, in the last iteration, a new string of 1’s begins, even though it is only
one bit long, so we perform the subtraction. The algorithm ends and we never
add this value back, which is OK since our result must be negative for this
data.

 1997 John D. Carpinelli, All Rights Reserved 31

Example (continued)

Step AC QR Qn+1 SC
2 01011 01100 0 3

 3,4 00101 10110 0 2
2,3,4 00010 11011 0 1

2 10011 11011 0 1
3,4 11001 11101 1 0
Result: (-13)*(+15) = -195

Whereas the signed-magnitude multiplication algorithm employed a shift-add
methodology, the division algorithm uses a shift-subtract methodology. For
each iteration, it subtracts the divisor from the running dividend. If the result
is negative, i.e. the divisor didn’t go into the dividend, it restores the original
dividend value. If the result is not negative, i.e. it does go into the dividend, it
updates the quotient accordingly.

 1997 John D. Carpinelli, All Rights Reserved 32

Signed-Magnitude division:
restoring algorithm

u Shift-subtract methodology
u Perform comparison by subtraction
u If incorrect, restore running dividend
u If correct, update quotient

Consider this numeric example. For each iteration, the divisor goes into the
dividend either one or zero times. In the restoring algorithm, we will perform
the subtraction every time and, if necessary, add the result back.

 1997 John D. Carpinelli, All Rights Reserved 33

Signed-Magnitude division:
numeric example

 01011
1001) 01101010

0000
 1101
 1001
 1000
 0000
 10001
 1001
 10000
 1001
 0111

Here is the restoring division algorithm for signed-magnitude numbers. The
first two steps do some initialization, such as setting the sign of the result and
setting the loop counter. The first step also performs a subtraction, A-B. In
fact, this is done to determine whether an overflow exists. If the carry bit is set
to one as a result of this operation, the final result will not fit in a single
register; an overflow will occur. Step 2 takes note of this and processes it
accordingly. This step also restores the original value in EA, just in case there
is no overflow and the algorithm must proceed.

Steps 3 to 6 implement the shift-subtract-restore loop. The dividend is stored
in registers E&A&Q. This value is shifted left one position in step 3. In step
4, the algorithm subtracts B from A to test if A goes into B. The carry flag E
will be set to 1 if this is the case. For this reason, we must process two distinct
situations. If E=1, the value in E&A must be greater than the value in B, since
E&A is one bit longer than B and has a leading 1 in this case. Otherwise we
perform the comparison and set E to see if A>=B.

In step 5 we do one of two things. If E is 1, we were correct in performing the
subtraction, so we update the running quotient. If not, we restore the original
value into E&A. Regardless, we decrement the loop counter and, if not done,
jump back in step 6.

 1997 John D. Carpinelli, All Rights Reserved 34

Signed-Magnitude division
algorithm

Q ←← A&Q div B, A ←← remainder

1. Qs ← ← As ⊕⊕ Bs, EA ← ← A+B+1, SC ← ← n-1
2. EA ← ← A+B, DVF ← ← E, IF (E=1) THEN {overflow}
3. shl(EAQ)
4. IF (E=0) THEN EA ← ← A+B+1,

IF (E=1) THEN A ← ← A+B+1
5. IF (E=1) THEN Qn ← ← 1, IF (E=0) THEN EA ← ← A+B,

SC ← ← SC - 1
6. IF (SC≠≠0) THEN GOTO 3

Consider this example. The first two steps determine that there is no overflow.
The first iteration of the loop performs the shift and subtract, which sets E=1.
This tells us that the subtraction should have occurred, so we set the most
significant bit of the quotient to 1.

 1997 John D. Carpinelli, All Rights Reserved 35

Signed-Magnitude division
example

A = 1001, Q = 0111, B = 1101, As=Bs=Qs=0

Step Notes E A Q SC
1 Qs ← ← 0 0 1100 0111 4
2 DVF ← ← 0 1 1001 0111 4
3 1 0010 1110 4
4 1 0101 1110 4

 5,6 Divides 1 0101 1111 3

The next iteration sets E=0, which means that the subtraction must be undone.
In step 5 we restore the value. We proceed through the third iteration, which
does perform the subtraction as required.

 1997 John D. Carpinelli, All Rights Reserved 36

Signed-Magnitude division
example (continued)

Step Notes E A Q SC
3 0 1011 1110 3
4 0 1110 1110 3

 5,6 Restore 0 1011 1110 2
3 1 0111 1100 2
4 1 1010 1100 2

 5,6 Divides 1 1010 1101 1

The final iteration also results in a successful subtraction. The quotient ends
up in register Q and the remainder in register A.

 1997 John D. Carpinelli, All Rights Reserved 37

Signed-Magnitude division
example (continued)

Step Notes E A Q SC
3 1 0101 1010 1
4 1 1000 1010 1

 5,6 Divides 1 1000 1011 0

Result: 151÷÷ 13 = 11 R 8

The non-restoring algorithm does not perform the subtraction unless it is
required. Instead, it compares the two values using a comparator first and
then, if A>=B, it performs the subtraction.

 1997 John D. Carpinelli, All Rights Reserved 38

Non-restoring algorithm

u Similar to the restoring algorithm,
except the magnitudes of A and B are
compared prior to subtraction

To implement signed-2’s complement division, we’re going to cheat a little
bit. First we will convert all of the numbers to positive values, which are the
same in both signed-magnitude and signed-2’s complement format. Then we
will call the signed-magnitude algorithm as a subroutine to perform the
division. Finally we will convert the result back to signed-2’s complement
format if it is negative. Again, if it is positive the values are represented the
same and no final conversion is necessary.

 1997 John D. Carpinelli, All Rights Reserved 39

Signed-2’s Complement division

u Convert all numbers to positive values
(which are the same in signed-magnitude
and signed-2’s complement)

u Call the signed-magnitude algorithm to
perform the division

u Convert the result back to signed-2’s
complement form if it is negative

Here is the algorithm to divide signed-2’s complement numbers. The first step
performs the usual bookkeeping, setting the sign of the result and initializing
the loop counter. The second step converts each number to a positive value. If
the associated sign bit is zero, indicating that the number is already positive, it
simply reloads the same value back into the registers. If the sign bits are one,
this step performs a 2’s complement on the data, thus negating it.

The third step calls the signed-magnitude division algorithm as a subroutine.
This algorithm returns the quotient in register QR and the remainder in AC.
Finally, step 4 converts the value to 2’s complement format if it is negative.
This step also restores BR to its original value, if necessary.

 1997 John D. Carpinelli, All Rights Reserved 40

Signed-2’s Complement division
algorithm

QR ←← AC&QR ÷÷ BR, AC ←← remainder

1. Qs ← ← As ⊕⊕ Bs, SC ← ← n-1
2. AQ ← (← (AQ⊕⊕As)+As, BR ← (← (BR⊕⊕Bs)+Bs

3. CALL signed-magnitude algorithm
4. Q ← (← (Q⊕⊕Qs)+Qs, A ← (← (A⊕⊕As)+As ,

BR ← (← (BR⊕⊕Bs)+Bs

Consider this example. The first step sets the sign of the result to 1, since a
negative number divided by a positive number must be negative, regardless of
the magnitudes. The second step converts AQ to + 160; B retains its value of
+12. The third step calls the signed-magnitude routine, which returns the
values Q=+13 and A=+4. Finally, the fourth step converts the returned values
to -13 and -4.

 1997 John D. Carpinelli, All Rights Reserved 41

Signed-2’s Complement division
example

Example: -160 ÷÷ 12, BR = 01100,
AC&Q = 101100000,

STEP ACTION
1 Qs ← ← 1, SC ← ← 4
2 AQ ←← 10100000, B ← ← 1100
3 A ←← 0100, Q ←← 1101
4 A ←← 1100, Q ←← 0011

Result: -160÷÷ 12 = -13 R -4

To add or subtract floating point numbers, we follow this procedure, which
was first presented in the pipeline example in the previous module. First, we
check to see if either number is zero. If so, we form the proper result and exit.
This is consistent with earlier discussion that zero must be treated as a special
case. Then we align the mantissas and perform the addition or subtraction.
Finally, we normalize the result if necessary.

 1997 John D. Carpinelli, All Rights Reserved 42

Floating point addition and
subtraction

1. Check for zeros
2. Align mantissas
3. Add/subtract mantissas
4. Normalize result

The algorithm shown on this slide and the next slide implement the floating
point addition and subtraction process described on the previous slide. The
first two steps check for zeros. If BR is zero, AC should not be changed. If
BR is not zero and AC is zero, then AC gets either BR or /BR, depending on
the value of OP and the sign of B.

Step 3 aligns the mantissas. It checks to see which exponent is greater, shifts
the lesser exponent’s mantissa one position to the right, increments its
exponent and loops back. This is repeated until the exponents are the same, or
the numbers are aligned.

 1997 John D. Carpinelli, All Rights Reserved 43

Floating point addition and
subtraction algorithm

AC ←← AC +/- BR (OP=0 for +, OP=1 for -)

1. IF (BR=0) THEN {DONE}
2. IF (AC=0) THEN As ←← Bs ⊕⊕ OP,

AC ←← BR, {DONE}
3. IF (a ≠≠ b) THEN

{IF (a>b) THEN (shr B, b ←← b+1, goto 3),
 IF (a<b) THEN (shr A, a ←← a+1, goto 3)}

Step 4 adds or subtracts the two mantissas, as appropriate. If the values were
added, then there cannot be a sign reversal, so we proceed directly to step 8
and normalize the result. If the values were subtracted, then it is possible that
the value generated is in fact the negative of the value desired. In step 5, we
negate this value by performing a 2’s complement operation. In step 6, we
check to see if we have generated a zero result, and process it if we did. Step 7
normalizes the result in case it has leading zeroes. Steps 6 and 7 each
terminate the algorithm if activated, since two numbers which were subtracted
cannot generate a result of 1 or more.

 1997 John D. Carpinelli, All Rights Reserved 44

Floating point addition and
subtraction algorithm (continued)

4. EA ←← A + (B ⊕⊕ Bs ⊕⊕ OP) + (Bs ⊕⊕ OP),
IF (As ⊕⊕ Bs ⊕⊕ OP) = 0 THEN GOTO 8

5. A ←← (A ⊕⊕ E) + E, As ←← (As ⊕⊕ E)
6. IF (A=0) THEN (AC ←← 0, DONE)
7. IF (A1=0) THEN (shl A, a ←← a-1, goto 7),

ELSE {DONE}
8. IF (E=1) THEN (shr EA, a ←← a+1, DONE)

In this example, we add 2 1/2 and 1 3/4. Steps 1 and 2 find no zero operands.
Step 3 normalizes b from .111 * 2^1 to .0111 * 2^2. Step 4 adds the two
mantissas, generating a carry out. Since we added the values, we go directly to
step 8, where we normalize the result, converting it from 1.0001 * 2^2 to
.10001 * 2^3.

 1997 John D. Carpinelli, All Rights Reserved 45

Floating point addition and
subtraction example

AsAa = .101 * 22 + BsBb = + .111 * 21

STEP ACTION
1,2 ------------
 3 B ←← 0111, b ←← 2
 4 EA ←← 10001 (= 1.0001), GOTO 8
 8 A ←← 10001 (= .10001), a ←← 3

To multiply two floating point numbers, we must follow this procedure. First
we check for zeros. If either operand is zero, the result must be zero. If not,
we add the exponents and multiply the mantissas. We do not need to align the
data for multiplication. Finally, we normalize the result, if necessary. In this
case, each binary mantissa is of the form .1---, so the result must be between
0.01 and .111..., so we only need to check for one leading zero here.

 1997 John D. Carpinelli, All Rights Reserved 46

Floating point multiplication

1. Check for zeros
2. Add exponents
3. Multiply mantissas
4. Normalize product

The steps of this algorithm correspond one-to-one with the steps presented in
the previous slide. In step 1, we check for zeros. If either number is zero, the
result is set to zero. In step 2, we add the exponents and in step 3, we multiply
the mantissas by using the signed-magnitude multiplication algorithm.
Finally, in step 4, we normalize the number in case it has the one leading zero.

 1997 John D. Carpinelli, All Rights Reserved 47

Floating point multiplication
algorithm

AC ←← BR * QR, truncate low order bits

1. IF (BR=0 OR QR=0) THEN {AC ←← 0, DONE}
2. a ←← q + b
3. Multiply mantissas using the

signed-magnitude algorithm
4. IF (A1=0) THEN (shl A, a ←← a-1, done)

Consider this example, which forms 2 1/2 * 1 3/4 = 4 3/8. The first step does
not find a zero operand, so it does nothing. Step 2 sets the exponent of the
result to 3 and step 3 sets the mantissa to 100011 (= .100011). The result is
already in normal form, so step 4 does not modify it. The final result is
.100011 * 2^3, or 100.011 in binary, or 4 3/8 in decimal.

 1997 John D. Carpinelli, All Rights Reserved 48

Floating point multiplication
example

AsAa = .101 * 22 * BsBb = + .111 * 21

STEP ACTION
 1 -----------
 2 a ←← 3
 3 AC&Q ←← 100011
 4 -----------

Floating point division, like the past few algorithms, begins by checking for
zeros. If the dividend is zero, the result is zero. If the divisor is zero, the result
is an overflow (divide by zero). If neither number is zero, we initialize the
registers and evaluate the sign bits. We then align the dividends, which can
take at most one iteration, and subtract the exponents. We then divide the
mantissas using the signed-magnitude division algorithm.

 1997 John D. Carpinelli, All Rights Reserved 49

Floating point division

1. Check for zeros
2. Initialize registers and evaluate signs
3. Align dividend
4. Subtract exponents
5. Divide mantissas

Steps 1 and 2 check to see if either the divisor or the dividend is zero. Note
that we check the dividend first to catch the case 0/0, for which we wish to
return an overflow, not a result of zero. Step 3 sets the sign, initializes the
running quotient to zero and sets the loop counter.

Step 4 performs the alignment, which is a little different than in previous
algorithms. Recall that the signed-magnitude algorithm will generate an
overflow if A is greater than or equal to B. In floating point, we simply shift A
one position to the right and increment the exponent by one. This gives A a
leading zero and guarantees that it will be less than B. In step 5 we set the
exponent and in step 6 we generate the mantissa of the quotient by using the
signed-magnitude division algorithm.

 1997 John D. Carpinelli, All Rights Reserved 50

Floating point division algorithm

QR ←← AC ÷÷ BR

1. IF (BR=0) THEN {ERROR}
2. IF (AC=0) THEN {QR ←← 0, DONE}
3. Qs ← ← As ⊕⊕ Bs, Q ←← 0, SC ←← n-1
4. IF (A>=B) THEN (shr A, a ←← a+1)
5. q ←← a - b
6. Divide mantissas using the

signed-magnitude algorithm, DONE

Consider this example, which divides 2 1/2 by 1 3/4. Steps 1 and 2 find no
zero operands, so step 3 sets the sign to zero, initializes the running quotient in
Q and sets the loop counter to 3. Step 4 does not have to normalize A, since it
is less than B, and step 5 forms the exponent of the result. Finally, step 6 uses
the signed-magnitude algorithm to generate the magnitude of the quotient. For
this example, our result is .1011 * 2^1, or approximately 1 3/7. The actual
result generated is 1 3/8 due to truncation of the lower order bits of the
quotient.

 1997 John D. Carpinelli, All Rights Reserved 51

Floating point division example

AsAa = .101 * 22 ÷÷ BsBb = + .111 * 21

STEP ACTION
1,2 -----------
 3 Qs ← ← 0, Q ←← 0, SC ←← 3
 4 -----------
 5 q ← ← 1
 6 Q ←← 1011

BCD addition and subtraction is very similar to signed-magnitude addition and
subtraction. However, here we use 4-bit fields to represent digits. This means
we will have to account for cases in which the digits produce illegal values,
such as 1100, or incorrect values, such as 1001 + 1001 = 0010. As we will see,
this will be handled by modifying the adder hardware to account for BCD
format. In several of the following algorithms, we will need to perform a shift-
add or shift-subtract procedure. Instead of doing a binary shift, we will do a
decimal shift, in which the data is shifted an entire digit one position to the
right or left, as appropriate.

 1997 John D. Carpinelli, All Rights Reserved 52

BCD addition/subtraction

u Similar to signed-magnitude, but for 4-
bit decimal digits

u dshr = decimal shift right
u Changes in addition procedure can be

handled in hardware

This hardware adds two BCD digits. There are two cases in which adding the
binary values will not generate the correct result. The first case occurs when a
result from 1010 to 1111 is generated; these are the invalid codes in BCD. The
second occurs when a carry out is generated. For instance, adding 1001 and
1001 results in 1 0010. Although 0010 is a valid BCD digit, it is not the
correct value. In either case, we must add 0110 (the difference between 10 and
16) to correct the value.

If we use this unit in the parallel adder instead of binary adders, the same
addition and subtraction algorithm used for signed-magnitude data can be used
for BCD data. One exception to this is how we will handle complements,
which will be described later.

 1997 John D. Carpinelli, All Rights Reserved 53

BCD adder unit

See figure 10.18, p. 367 of the textbook.

Multiplication follows the same procedure as the signed-magnitude
multiplication algorithm, with a few modifications. Since we are dealing with
BCD data, we deal with 4-bit digits instead of single bits. This means that we
must use decimal shifts instead of binary shifts. It also means that, when
performing the shift-add procedure, we may need to perform multiple adds per
digit. In the binary case, each bit was either 0 or 1, so we had to add at most
one time. Here we are dealing with digits, so we may need to add up to nine
times per iteration.

 1997 John D. Carpinelli, All Rights Reserved 54

BCD multiplication

u Similar to signed-magnitude, but for 4-
bit decimal digits

u Use dshr instead of shr
u Multiple additions may be required

This algorithm implements BCD multiplication using a shift-add philosophy.
Of note is that we use QL as the least significant digit instead of Qn, as was
done in the signed-magnitude algorithm. Also, we have a carry digit, Ae,
instead of a carry flag E. Finally, k is the number of digits and thus the
number of iterations of the shift-add loop.

Step 1 sets the sign, initializes the running total and sets the loop counter. Step
2 performs the add portion of the shift-add. Note that it loops back to itself in
order to perform the multiple adds required by digits greater than one. Step 3
performs the shift, a decimal shift this time, and decrements the loop counter.
Finally, step 4 loops back if not done.

 1997 John D. Carpinelli, All Rights Reserved 55

BCD multiplication algorithm

1. As ← ← Bs ⊕⊕ Qs, A ← ← 0, Ae ← ← 0, SC ← ← k
2. IF (QL ≠ ≠ 0) THEN (Ae A ← ← A+B,

QL ← ← QL-1, GOTO 2)
3. dshr(Ae AQ), SC ← ← SC - 1
4. IF (SC ≠ ≠ 0) THEN GOTO 2

Consider this example. We begin by clearing Ae and A and by setting the loop
counter to 2. The first loop performs step 2 twice because the least significant
digit of Q is 2. Steps 3 and 4 perform the shift and loop counter maintenance.
During the second iteration, we perform step 2 only once, since the least
significant digit of Q is now 1.

Notice that the running product is underlined. Just as before, we shift the extra
bit of the product into Q just as the least significant digit of the multiplier is
processed and no longer needed.

 1997 John D. Carpinelli, All Rights Reserved 56

BCD multiplication example

B = 57 * Q = 12

STEP AeA Q SC
 1 000 12 2
 2 057 11
 2 114 10
3,4 011 41 1
 2 068 40
3,4 006 84 0

Just as BCD multiplication is an extension of signed-magnitude multiplication,
BCD division is an extension of signed-magnitude division. Again we use a
decimal shift instead of a linear shift and, just as in the multiplication
algorithm, more than one subtraction may be required.

Instead of performing subtraction using 2’s complement, we perform it using
10’s complement. The 10’s complement of a number is equal to its 9’s
complement + 1. For example, a 3-digit number XYZ has a 10’s complement
of (999-XYZ)+1.

 1997 John D. Carpinelli, All Rights Reserved 57

BCD division

u Similar to signed-magnitude, but for
4-bit decimal digits

u Use dshl instead of shl
u 10’s complement = 9’s complement + 1
u Multiple subtractions may be required

This algorithm implements BCD division. As before, we check for overflow
and exit if it present. Otherwise we proceed to step 2, where we set the sign,
initialize the running quotient and set the loop counter.

Steps 3 to 7 comprise the loop. In step 3 we perform the shift and in step 4 we
form A-B using 10’s complement. Step 5 checks to see if the subtraction was
valid. If so, it increments the quotient, performs another subtraction and loops
back to itself. This step implements the multiple subtraction in this algorithm.
When we have subtracted one too many times, we proceed to step 6, where we
restore the extra subtraction and decrement the loop counter. Step 7 either
branches back, if we are not done, or exits the algorithm.

 1997 John D. Carpinelli, All Rights Reserved 58

BCD division algorithm

Q ←← A&Q div B, A ←← remainder

1. IF (OVERFLOW) THEN {ERROR}
2. Qs ← ← As ⊕⊕ Bs, Be ← ← 0, SC ← ← k
3. dshl(AQ)
4. EA ← ← A+B+1
5. IF (E=1) THEN (QL ← ← QL+1, EA ← ← A+B+1, GOTO 5)
6. A ← ← A+B, SC ← ← SC - 1
7. IF (SC≠≠0) THEN GOTO 3

In this example, step 1 finds no overflow, so step 2 initializes the necessary
values. The first iteration of the loop begins by shifting the value one position
to the left and subtracting via 10’s complement. Step 5 checks and sees that
the first subtraction was valid, so it performs a second subtraction and loops
back to itself. During the second iteration of step 5, we find that this
subtraction is also valid, so we update Q and perform a third subtraction. The
next iteration of step 5 finds that this is invalid, so step 6 restores the last
subtraction. This step and step 7 finish the first iteration of the loop.

 1997 John D. Carpinelli, All Rights Reserved 59

BCD division example

AQ = 0769 ÷÷ B = 036; B+1 = 964

STEP A Q SC
1,2 007 69 2
 3 076 90
 4 040 90
 5 004 91
 5 968 92
6,7 004 92 1

The second and final iteration performs similarly to the first iteration, except
that step 5 is only executed once in this iteration. The final result is 769/36 =
21 with a remainder of 13.

 1997 John D. Carpinelli, All Rights Reserved 60

BCD division example (continued)

STEP A Q SC
 3 049 20
 4 013 20
 5 977 21
 6 013 21 0

This module has presented the arithmetic operations of addition, subtraction,
multiplication and division for four commonly used numeric formats: signed-
magnitude, signed-2’s complement, floating point and BCD. We have
examined the arithmetic algorithms and the hardware used to realize these
operations.

In the next module we will study I/O processing. This topic includes both
synchronous and asynchronous data transfer. It also covers interrupts and
DMA transfers.

 1997 John D. Carpinelli, All Rights Reserved 61

Summary

þ Arithmetic operations: addition,
subtraction, multiplication, division

þ Numeric formats: signed-magnitude,
signed-2’s complement, floating point,
BCD

þ Arithmetic algorithms
þ Hardware
þ Next module: I/O processing

