
1Programming the Basic Computer

Computer Organization

PROGRAMMING THE BASIC COMPUTER

Introduction

Machine Language

Assembly Language

Assembler

Program Loops

Programming Arithmetic and Logic Operations

Subroutines

Input-Output Programming

2Programming the Basic Computer

Computer Organization

INTRODUCTION

Symbol Hexa code Description

Those concerned with computer architecture should
have a knowledge of both hardware and software
because the two branches influence each other.

m: effective address
M: memory word (operand)

found at m

Introduction

AND 0 or 8 AND M to AC
ADD 1 or 9 Add M to AC, carry to E
LDA 2 or A Load AC from M
STA 3 or B Store AC in M
BUN 4 or C Branch unconditionally to m
BSA 5 or D Save return address in m and branch to m+1
ISZ 6 or E Increment M and skip if zero
CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right E and AC
CIL 7040 Circulate left E and AC
INC 7020 Increment AC, carry to E
SPA 7010 Skip if AC is positive
SNA 7008 Skip if AC is negative
SZA 7004 Skip if AC is zero
SZE 7002 Skip if E is zero
HLT 7001 Halt computer
INP F800 Input information and clear flag
OUT F400 Output information and clear flag
SKI F200 Skip if input flag is on
SKO F100 Skip if output flag is on
ION F080 Turn interrupt on
IOF F040 Turn interrupt off

Instruction Set of the Basic Computer

3Programming the Basic Computer

Computer Organization

MACHINE LANGUAGE

Program
 A list of instructions or statements for directing
 the computer to perform a required data
 processing task

Various types of programming languages
 - Hierarchy of programming languages

• Machine-language
 - Binary code
 - Octal or hexadecimal code

• Assembly-language (Assembler)
 - Symbolic code

• High-level language (Compiler)

Machine Language

4Programming the Basic Computer

Computer Organization

COMPARISON OF PROGRAMMING LANGUAGES

0 0010 0000 0000 0100
1 0001 0000 0000 0101

10 0011 0000 0000 0110
11 0111 0000 0000 0001

100 0000 0000 0101 0011
101 1111 1111 1110 1001
110 0000 0000 0000 0000

• Binary Program to Add Two Numbers

Location Instruction Code 000 2004
001 1005
002 3006
003 7001
004 0053
005 FFE9
006 0000

• Hexa program
Location Instruction

• Program with Symbolic OP-Code

000 LDA 004 Load 1st operand into AC
001 ADD 005 Add 2nd operand to AC
002 STA 006 Store sum in location 006
003 HLT Halt computer
004 0053 1st operand
005 FFE9 2nd operand (negative)
006 0000 Store sum here

Location Instruction Comments

• Assembly-Language Program

• Fortran Program

INTEGER A, B, C
DATA A,83 / B,-23
C = A + B
END

Machine Language

 ORG 0 /Origin of program is location 0
 LDA A /Load operand from location A
 ADD B /Add operand from location B
 STA C /Store sum in location C
 HLT /Halt computer

A, DEC 83 /Decimal operand
B, DEC -23 /Decimal operand
C, DEC 0 /Sum stored in location C

 END /End of symbolic program

5Programming the Basic Computer

Computer Organization

ASSEMBLY LANGUAGE

Syntax of the BC assembly language
 Each line is arranged in three columns called fields
 Label field
 - May be empty or may specify a symbolic
 address consists of up to 3 characters
 - Terminated by a comma
 Instruction field
 - Specifies a machine or a pseudo instruction
 - May specify one of
 * Memory reference instr. (MRI)
 MRI consists of two or three symbols separated by spaces.
 ADD OPR (direct address MRI)
 ADD PTR I (indirect address MRI)
 * Register reference or input-output instr.
 Non-MRI does not have an address part
 * Pseudo instr. with or without an operand
 Symbolic address used in the instruction field must be

defined somewhere as a label
 Comment field
 - May be empty or may include a comment

Assembly Language

6Programming the Basic Computer

Computer Organization

PSEUDO-INSTRUCTIONS

ORG N
 Hexadecimal number N is the memory loc.
 for the instruction or operand listed in the following line
END
 Denotes the end of symbolic program
DEC N
 Signed decimal number N to be converted to the binary
HEX N
 Hexadecimal number N to be converted to the binary

Example: Assembly language program to subtract two numbers
ORG 100
LDA SUB
CMA
INC
ADD MIN
STA DIF
HLT
DEC 83
DEC -23
HEX 0
END

/ Origin of program is location 100
/ Load subtrahend to AC
/ Complement AC
/ Increment AC
/ Add minuend to AC
/ Store difference
/ Halt computer
/ Minuend
/ Subtrahend
/ Difference stored here
/ End of symbolic program

MIN,
SUB,
DIF,

Assembly Language

7Programming the Basic Computer

Computer Organization

TRANSLATION TO BINARY

ORG 100
LDA SUB
CMA
INC
ADD MIN
STA DIF
HLT
DEC 83
DEC -23
HEX 0
END

MIN,
SUB,
DIF,

100 2107
101 7200
102 7020
103 1106
104 3108
105 7001
106 0053
107 FFE9
108 0000

Symbolic ProgramLocation Content
Hexadecimal Code

Assembly Language

8Programming the Basic Computer

Computer Organization

ASSEMBLER - FIRST PASS -

Assembler
 Source Program - Symbolic Assembly Language Program
 Object Program - Binary Machine Language Program
Two pass assembler
 1st pass: generates a table that correlates all user defined
 (address) symbols with their binary equivalent value
 2nd pass: binary translation

First pass

Assembler

First pass

LC := 0

Scan next line of code Set LC

Label
no

yes

yes

no
ORG

Store symbol
in address-
symbol table
together with
value of LC

END

Increment LC

Go to
second
pass

no

yes

9Programming the Basic Computer

Computer Organization

ASSEMBLER - SECOND PASS -

Machine instructions are translated by means of table-lookup procedures;
 (1. Pseudo-Instruction Table, 2. MRI Table, 3. Non-MRI Table
 4. Address Symbol Table)

Assembler

Second pass

LC <- 0

Scan next line of code
Set LC

yes

yes

ORGPseudo
instr.

yes END
no

Done

yes

MRI

no

Valid
non-MRI

instr.

no
Convert
operand
to binary
and store
in location
given by LC

no

DEC or
HEX

Error in
line of
code

Store binary
equivalent of
instruction
in location
given by LC

yes

no
Get operation code
and set bits 2-4

Search address-
symbol table for
binary equivalent
of symbol address
and set bits 5-16

I

Set
first

bit to 0

Set
first

bit to 1

yes no

Assemble all parts of
binary instruction and
store in location given by LC

Increment LC

Second Pass

10Programming the Basic Computer

Computer Organization

PROGRAM LOOPS

DIMENSION A(100)
INTEGER SUM, A
SUM = 0
DO 3 J = 1, 100
SUM = SUM + A(J)3

ORG 100
LDA ADS
STA PTR
LDA NBR
STA CTR
CLA
ADD PTR I
ISZ PTR
ISZ CTR
BUN LOP
STA SUM
HLT
HEX 150
HEX 0
DEC -100
HEX 0
HEX 0
ORG 150
DEC 75

DEC 23
END

/ Origin of program is HEX 100
/ Load first address of operand
/ Store in pointer
/ Load -100
/ Store in counter
/ Clear AC
/ Add an operand to AC
/ Increment pointer
/ Increment counter
/ Repeat loop again
/ Store sum
/ Halt
/ First address of operands
/ Reserved for a pointer
/ Initial value for a counter
/ Reserved for a counter
/ Sum is stored here
/ Origin of operands is HEX 150
/ First operand

/ Last operand
/ End of symbolic program

LOP,

ADS,
PTR,
NBR,
CTR,
SUM,

Program Loops

Loop: A sequence of instructions that are executed many times,
 each with a different set of data
Fortran program to add 100 numbers:

.

.

.

Assembly-language program to add 100 numbers:

11Programming the Basic Computer

Computer Organization

PROGRAMMING ARITHMETIC AND LOGIC OPERATIONS

 - Software Implementation
 - Implementation of an operation with a program
 using machine instruction set
 - Usually when the operation is not included
 in the instruction set

 - Hardware Implementation
 - Implementation of an operation in a computer
 with one machine instruction

 Software Implementation example:

* Multiplication
- For simplicity, unsigned positive numbers
- 8-bit numbers -> 16-bit product

Programming Arithmetic and Logic Operations

Implementation of Arithmetic and Logic Operations

12Programming the Basic Computer

Computer Organization

FLOWCHART OF A PROGRAM - Multiplication -

X holds the multiplicand
Y holds the multiplier
P holds the product

Example with four significant digits

0000 1111
0000 1011 0000 0000
0000 1111 0000 1111
0001 1110 0010 1101
0000 0000 0010 1101
0111 1000 1010 0101
1010 0101

Programming Arithmetic and Logic Operations

cil

CTR ← - 8
P ← 0

E ← 0

AC ← Y

Y ← AC

cir EAC

E

P ← P + X

E ← 0

AC ← X

cir EAC

X ← AC

CTR ← CTR + 1

=1=0

CTR =0
Stop

≠ 0

X =
Y =

P

13Programming the Basic Computer

Computer Organization

ASSEMBLY LANGUAGE PROGRAM - Multiplication -

ORG 100
CLE
LDA Y
CIR
STA Y
SZE
BUN ONE
BUN ZRO
LDA X
ADD P
STA P
CLE
LDA X
CIL
STA X
ISZ CTR
BUN LOP
HLT
DEC -8
HEX 000F
HEX 000B
HEX 0
END

/ Clear E
/ Load multiplier
/ Transfer multiplier bit to E
/ Store shifted multiplier
/ Check if bit is zero
/ Bit is one; goto ONE
/ Bit is zero; goto ZRO
/ Load multiplicand
/ Add to partial product
/ Store partial product
/ Clear E
/ Load multiplicand
/ Shift left
/ Store shifted multiplicand
/ Increment counter
/ Counter not zero; repeat loop
/ Counter is zero; halt
/ This location serves as a counter
/ Multiplicand stored here
/ Multiplier stored here
/ Product formed here

LOP,

ONE,

ZRO,

CTR,
X,
Y,
P,

Programming Arithmetic and Logic Operations

14Programming the Basic Computer

Computer Organization

ASSEMBLY LANGUAGE PROGRAM
- Double Precision Addition -

LDA AL
ADD BL
STA CL
CLA
CIL
ADD AH
ADD BH
STA CH
HLT

/ Load A low
/ Add B low, carry in E
/ Store in C low
/ Clear AC
/ Circulate to bring carry into AC(16)
/ Add A high and carry
/ Add B high
/ Store in C high

Programming Arithmetic and Logic Operations

15Programming the Basic Computer

Computer Organization

ASSEMBLY LANGUAGE PROGRAM
- Logic and Shift Operations -

• Logic operations

- BC instructions : AND, CMA, CLA
- Program for OR operation

LDA A
CMA
STA TMP
LDA B
CMA
AND TMP
CMA

/ Load 1st operand
/ Complement to get A’
/ Store in a temporary location
/ Load 2nd operand B
/ Complement to get B’
/ AND with A’ to get A’ AND B’
/ Complement again to get A OR B

• Shift operations - BC has Circular Shift only
- Logical shift-right operation - Logical shift-left operation
 CLE CLE
 CIR CIL

- Arithmetic right-shift operation

CLE
SPA
CME
CIR

/ Clear E to 0
/ Skip if AC is positive
/ AC is negative
/ Circulate E and AC

Programming Arithmetic and Logic Operations

16Programming the Basic Computer

Computer Organization

SUBROUTINES

- A set of common instructions that can be used in a program many times.
- Subroutine linkage : a procedure for branching
 to a subroutine and returning to the main program

ORG 100
LDA X
BSA SH4
STA X
LDA Y
BSA SH4
STA Y
HLT
HEX 1234
HEX 4321

HEX 0
CIL
CIL
CIL
CIL
AND MSK
BUN SH4 I
HEX FFF0
END

/ Main program
/ Load X
/ Branch to subroutine
/ Store shifted number
/ Load Y
/ Branch to subroutine again
/ Store shifted number

/ Subroutine to shift left 4 times
/ Store return address here
/ Circulate left once

/ Circulate left fourth time
/ Set AC(13-16) to zero
/ Return to main program
/ Mask operand

X,
Y,

SH4,

MSK,

100
101
102
103
104
105
106
107
108

109
10A
10B
10C
10D
10E
10F
110

Loc.

Subroutines

Subroutine

Example

17Programming the Basic Computer

Computer Organization

SUBROUTINE PARAMETERS AND DATA LINKAGE

ORG 200
LDA X
BSA OR
HEX 3AF6
STA Y
HLT
HEX 7B95
HEX 0
HEX 0
CMA
STA TMP
LDA OR I
CMA
AND TMP
CMA
ISZ OR
BUN OR I
HEX 0
END

/ Load 1st operand into AC
/ Branch to subroutine OR
/ 2nd operand stored here
/ Subroutine returns here

/ 1st operand stored here
/ Result stored here
/ Subroutine OR
/ Complement 1st operand
/ Store in temporary location
/ Load 2nd operand
/ Complement 2nd operand
/ AND complemented 1st operand
/ Complement again to get OR
/ Increment return address
/ Return to main program
/ Temporary storage

X,
Y,
OR,

TMP,

200
201
202
203
204
205
206
207
208
209
20A
20B
20C
20D
20E
20F
210

Loc.
Example: Subroutine performing LOGICAL OR operation; Need two parameters

Subroutines

Linkage of Parameters and Data between the Main Program and a Subroutine
- via Registers

 - via Memory locations
- ….

18Programming the Basic Computer

Computer Organization

SUBROUTINE - Moving a Block of Data -

BSA MVE
HEX 100
HEX 200
DEC -16
HLT
HEX 0
LDA MVE I
STA PT1
ISZ MVE
LDA MVE I
STA PT2
ISZ MVE
LDA MVE I
STA CTR
ISZ MVE
LDA PT1 I
STA PT2 I
ISZ PT1
ISZ PT2
ISZ CTR
BUN LOP
BUN MVE I
--
--
--

/ Main program
/ Branch to subroutine
/ 1st address of source data
/ 1st address of destination data
/ Number of items to move

/ Subroutine MVE
/ Bring address of source
/ Store in 1st pointer
/ Increment return address
/ Bring address of destination
/ Store in 2nd pointer
/ Increment return address
/ Bring number of items
/ Store in counter
/ Increment return address
/ Load source item
/ Store in destination
/ Increment source pointer
/ Increment destination pointer
/ Increment counter
/ Repeat 16 times
/ Return to main program

MVE,

LOP,

PT1,
PT2,
CTR,

• Fortran subroutine

SUBROUTINE MVE (SOURCE, DEST, N)
DIMENSION SOURCE(N), DEST(N)
DO 20 I = 1, N
DEST(I) = SOURCE(I)
RETURN
END

20

Subroutines

19Programming the Basic Computer

Computer Organization

INPUT OUTPUT PROGRAM

 Program to Input one Character(Byte)

SKI
BUN CIF
INP
OUT
STA CHR
HLT
--

 / Check input flag
 / Flag=0, branch to check again
 / Flag=1, input character
 / Display to ensure correctness
 / Store character

 / Store character here

CIF,

CHR,

LDA CHR
SKO
BUN COF
OUT
HLT
HEX 0057

/ Load character into AC
/ Check output flag
/ Flag=0, branch to check again
/ Flag=1, output character

/ Character is "W"

COF,

CHR,

Input Output Program

Program to Output a Character

20Programming the Basic Computer

Computer Organization

CHARACTER MANIPULATION

--
SKI
BUN FST
INP
OUT
BSA SH4
BSA SH4
SKI
BUN SCD
INP
OUT
BUN IN2 I

/ Subroutine entry

/ Input 1st character

/ Logical Shift left 4 bits
/ 4 more bits

/ Input 2nd character

/ Return

IN2,
FST,

SCD,

Subroutine to Input 2 Characters and pack into a word

Input Output Program

21Programming the Basic Computer

Computer Organization

PROGRAM INTERRUPT

Tasks of Interrupt Service Routine

 - Save the Status of CPU
 Contents of processor registers and Flags

 - Identify the source of Interrupt
 Check which flag is set

 - Service the device whose flag is set
 (Input Output Subroutine)

 - Restore contents of processor registers and flags

 - Turn the interrupt facility on

 - Return to the running program
 Load PC of the interrupted program

Input Output Program

22Programming the Basic Computer

Computer Organization

INTERRUPT SERVICE ROUTINE

-
BUN SRV
CLA
ION
LDA X
ADD Y
STA Z

STA SAC
CIR
STA SE
SKI
BUN NXT
INP
OUT
STA PT1 I
ISZ PT1
SKO
BUN EXT
LDA PT2 I
OUT
ISZ PT2
LDA SE
CIL
LDA SAC
ION
BUN ZRO I
-
-
-
-

/ Return address stored here
/ Branch to service routine
/ Portion of running program
/ Turn on interrupt facility

/ Interrupt occurs here
/ Program returns here after interrupt

/ Interrupt service routine
/ Store content of AC
/ Move E into AC(1)
/ Store content of E
/ Check input flag
/ Flag is off, check next flag
/ Flag is on, input character
/ Print character
/ Store it in input buffer
/ Increment input pointer
/ Check output flag
/ Flag is off, exit
/ Load character from output buffer
/ Output character
/ Increment output pointer
/ Restore value of AC(1)
/ Shift it to E
/ Restore content of AC
/ Turn interrupt on
/ Return to running program
/ AC is stored here
/ E is stored here
/ Pointer of input buffer
/ Pointer of output buffer

ZRO,

SRV,

NXT,

EXT,

SAC,
SE,
PT1,
PT2,

 0
 1
100
101
102
103
104

200

Loc.

Input Output Program

